Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.917
Filtrar
1.
Nature ; 628(8009): 795-803, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38632396

RESUMO

Insects constitute the most species-rich radiation of metazoa, a success that is due to the evolution of active flight. Unlike pterosaurs, birds and bats, the wings of insects did not evolve from legs1, but are novel structures that are attached to the body via a biomechanically complex hinge that transforms tiny, high-frequency oscillations of specialized power muscles into the sweeping back-and-forth motion of the wings2. The hinge consists of a system of tiny, hardened structures called sclerites that are interconnected to one another via flexible joints and regulated by the activity of specialized control muscles. Here we imaged the activity of these muscles in a fly using a genetically encoded calcium indicator, while simultaneously tracking the three-dimensional motion of the wings with high-speed cameras. Using machine learning, we created a convolutional neural network3 that accurately predicts wing motion from the activity of the steering muscles, and an encoder-decoder4 that predicts the role of the individual sclerites on wing motion. By replaying patterns of wing motion on a dynamically scaled robotic fly, we quantified the effects of steering muscle activity on aerodynamic forces. A physics-based simulation incorporating our hinge model generates flight manoeuvres that are remarkably similar to those of free-flying flies. This integrative, multi-disciplinary approach reveals the mechanical control logic of the insect wing hinge, arguably among the most sophisticated and evolutionarily important skeletal structures in the natural world.


Assuntos
Voo Animal , Aprendizado de Máquina , Asas de Animais , Animais , Asas de Animais/fisiologia , Asas de Animais/anatomia & histologia , Fenômenos Biomecânicos , Voo Animal/fisiologia , Músculos/fisiologia , Músculos/anatomia & histologia , Robótica , Masculino , Drosophila melanogaster/fisiologia , Drosophila melanogaster/anatomia & histologia , Redes Neurais de Computação , Feminino
2.
Nature ; 628(8009): 727-728, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38632425
3.
J R Soc Interface ; 21(213): 20230734, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38654630

RESUMO

Avian wing morphing allows dynamic, active control of complex flight manoeuvres. Previous linear time-invariant (LTI) models have quantified the effect of varying fixed wing configurations but the time-dependent effects of morphing between different configurations is not well understood. To fill this gap, I implemented a linear parameter-varying (LPV) model for morphing wing gull flight. This approach models the wing joint angles as scheduled parameters and accounts for nonlinear kinematic and gravitational effects while interpolating between LTI models at discrete trim points. With the resulting model, I investigated the longitudinal response associated with various joint extension trajectories. By optimizing the extension trajectory for four independent objectives (speed and pitch angle overshoot, speed rise time and pitch angle settling time), I found that the extension trajectory inherent to the gull wing does not guarantee an optimal response but may provide a sufficient response with a simpler mechanical implementation. Furthermore, the results indicated that gulls likely require extension speed feedback. This morphing LPV model provides insights into underlying control mechanisms, which may allow for avian-like flight in future highly manoeuvrable uncrewed aerial vehicles.


Assuntos
Voo Animal , Modelos Biológicos , Asas de Animais , Voo Animal/fisiologia , Animais , Asas de Animais/fisiologia , Asas de Animais/anatomia & histologia , Fenômenos Biomecânicos , Charadriiformes/fisiologia , Charadriiformes/anatomia & histologia
4.
Naturwissenschaften ; 111(3): 27, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652309

RESUMO

Re-evaluation of photographs of the tropical butterfly Morpho helenor from a previous study (Pignataro et al. 2023) revealed that its conclusion regarding increased wing fluctuating asymmetry in forest edge habitats compared to forest interior habitats could not be replicated. This discrepancy likely arises from (i) original measurements not being conducted blindly, (ii) insufficient photograph quality hindering accurate landmark selection, and (iii) a lack of detailed description of the measurement protocol. The likelihood of false positive discoveries within the published data concerning the impacts of environmental stress on the fluctuating asymmetry of plants and animals is probably higher than previously assumed.


Assuntos
Borboletas , Florestas , Borboletas/fisiologia , Borboletas/anatomia & histologia , Animais , Asas de Animais/anatomia & histologia , Asas de Animais/fisiologia , Ecossistema , Clima Tropical
5.
Commun Biol ; 7(1): 365, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532113

RESUMO

The evolutionary transition to powered flight remains controversial in bats, the only flying mammals. We applied aerodynamic modeling to reconstruct flight in the oldest complete fossil bat, the archaic Onychonycteris finneyi from the early Eocene of North America. Results indicate that Onychonycteris was capable of both gliding and powered flight either in a standard normodense aerial medium or in the hyperdense atmosphere that we estimate for the Eocene from two independent palaeogeochemical proxies. Aerodynamic continuity across a morphological gradient is further demonstrated by modeled intermediate forms with increasing aspect ratio (AR) produced by digital elongation based on chiropteran developmental data. Here a gliding performance gradient emerged of decreasing sink rate with increasing AR that eventually allowed applying available muscle power to achieve level flight using flapping, which is greatly facilitated in hyperdense air. This gradient strongly supports a gliding (trees-down) transition to powered flight in bats.


Assuntos
Quirópteros , Animais , Quirópteros/fisiologia , Voo Animal/fisiologia , Asas de Animais/fisiologia , Evolução Biológica , Fósseis
6.
J R Soc Interface ; 21(212): 20230591, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38503340

RESUMO

Turbulence is a widespread phenomenon in the natural world, but its influence on flapping fliers remains little studied. We assessed how freestream turbulence affected the kinematics, flight effort and track properties of homing pigeons (Columba livia), using the fine-scale variations in flight height as a proxy for turbulence levels. Birds showed a small increase in their wingbeat amplitude with increasing turbulence (similar to laboratory studies), but this was accompanied by a reduction in mean wingbeat frequency, such that their flapping wing speed remained the same. Mean kinematic responses to turbulence may therefore enable birds to increase their stability without a reduction in propulsive efficiency. Nonetheless, the most marked response to turbulence was an increase in the variability of wingbeat frequency and amplitude. These stroke-to-stroke changes in kinematics provide instantaneous compensation for turbulence. They will also increase flight costs. Yet pigeons only made small adjustments to their flight altitude, likely resulting in little change in exposure to strong convective turbulence. Responses to turbulence were therefore distinct from responses to wind, with the costs of high turbulence being levied through an increase in the variability of their kinematics and airspeed. This highlights the value of investigating the variability in flight parameters in free-living animals.


Assuntos
Columbidae , Acidente Vascular Cerebral , Animais , Columbidae/fisiologia , Fenômenos Biomecânicos , Voo Animal/fisiologia , Vento , Asas de Animais/fisiologia
7.
Bioinspir Biomim ; 19(3)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38467074

RESUMO

A limiting factor in the design of smaller size uncrewed aerial vehicles is their inability to navigate through gust-laden environments. As a result, engineers have turned towards bio-inspired engineering approaches for gust mitigation techniques. In this study, the aerodynamics of a red-tailed hawk's response to variable-magnitude discrete transverse gusts was investigated. The hawk was flown in an indoor flight arena instrumented by multiple high-speed cameras to quantify the 3D motion of the bird as it navigated through the gust. The hawk maintained its flapping motion across the gust in all runs; however, it encountered the gust at different points in the flapping pattern depending on the run and gust magnitude. The hawk responded with a downwards pitching motion of the wing, decreasing the wing pitch angle to between -20∘and -5∘, and remained in this configuration until gust exit. The wing pitch data was then applied to a lower-order aerodynamic model that estimated lift coefficients across the wing. In gusts slower than the forward flight velocity (low gust ratio), the lift coefficient increases at a low-rate, to a maximum of around 2-2.5. In gusts faster than the forward flight velocity (high gust ratio), the lift coefficient initially increased rapidly, before increasing at a low-rate to a value around 4-5. In both regimes, the hawk's observed height change due to gust interaction was similar (and small), despite larger estimated lift coefficients over the high gust regime. This suggests another mitigation factor apart from the wing response is present. One potential factor is the tail pitching response observed here, which prior work has shown serves to mitigate pitch disturbances from gusts.


Assuntos
Falcões , Animais , Voo Animal/fisiologia , Aves/fisiologia , Movimento (Física) , Asas de Animais/fisiologia , Fenômenos Biomecânicos , Modelos Biológicos
8.
Sci Rep ; 14(1): 6999, 2024 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-38523182

RESUMO

Gaining the ability to fly actively was a ground-breaking moment in insect evolution, providing an unprecedented advantage over other arthropods. Nevertheless, active flight was a costly innovation, requiring the development of wings and flight muscles, the provision of sufficient energetic resources, and a complex flight control system. Although wings, flight muscles, and the energetic budget of insects have been intensively studied in the last decades, almost nothing is known regarding the flight-control devices of many crucial insect groups, especially beetles (Coleoptera). Here, we conducted a phylogenetic-informed analysis of flight-related mechanosensors in 28 species of bark beetles (Curculionidae: Scolytinae, Platypodinae), an economically and ecologically important group of insects characterized by striking differences in dispersal abilities. The results indicated that beetle flight apparatus is equipped with different functional types of mechanosensors, including strain- and flow-encoding sensilla. We found a strong effect of allometry on the number of mechanosensors, while no effect of relative wing size (a proxy of flight investment) was identified. Our study constitutes the first step to understanding the drivers and constraints of the evolution of flight-control devices in Coleoptera, including bark beetles. More research, including a quantitative neuroanatomical analysis of beetle wings, should be conducted in the future.


Assuntos
Besouros , Gorgulhos , Animais , Gorgulhos/fisiologia , Filogenia , Casca de Planta , Besouros/fisiologia , Asas de Animais/fisiologia , Voo Animal/fisiologia
9.
PLoS One ; 19(3): e0299542, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478544

RESUMO

The potential application of flapping wings in micro-aerial vehicles is gaining interest due to their ability to generate high lift even in confined spaces. Most studies in the past have investigated hovering wings as well as those flapping near solid surfaces. However, the presence of surface tension at the water-air interface and the ability of the water surface to move might differentiate its response to the proximity of wings, compared to that of solid surfaces. Motivated by underwater, amphibian robots and several underwater experimental studies on flapping wings, our study investigated the effects of the proximity of flapping wings to the water surface at low Reynolds numbers (Re = 3400). Experiments were performed on a rectangular wing in a water tank with prescribed flapping kinematics and the aerodynamic forces were measured. The effects of surface proximity on the wing in its both upright and inverted orientations were studied. Broadly, the mean lift and drag coefficients in both orientations decreased significantly (by up to 60%) as the distance from the water surface was increased. In the case of the upright orientation, the mean lift coefficient was slightly decreased very close to the water surface with its peak being observed at the normalized clearance of [Formula: see text]. Overall, the study revealed an enhancement in the aerodynamic forces closer to the water surface.


Assuntos
Voo Animal , Asas de Animais , Animais , Asas de Animais/fisiologia , Voo Animal/fisiologia , Modelos Biológicos , Fenômenos Mecânicos , Fenômenos Biomecânicos
10.
Science ; 383(6687): 1039-1040, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38452086
11.
Elife ; 122024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408118

RESUMO

Avian takeoff requires peak pectoralis muscle power to generate sufficient aerodynamic force during the downstroke. Subsequently, the much smaller supracoracoideus recovers the wing during the upstroke. How the pectoralis work loop is tuned to power flight is unclear. We integrate wingbeat-resolved muscle, kinematic, and aerodynamic recordings in vivo with a new mathematical model to disentangle how the pectoralis muscle overcomes wing inertia and generates aerodynamic force during takeoff in doves. Doves reduce the angle of attack of their wing mid-downstroke to efficiently generate aerodynamic force, resulting in an aerodynamic power dip, that allows transferring excess pectoralis power into tensioning the supracoracoideus tendon to assist the upstroke-improving the pectoralis work loop efficiency simultaneously. Integrating extant bird data, our model shows how the pectoralis of birds with faster wingtip speed need to generate proportionally more power. Finally, birds with disproportionally larger wing inertia need to activate the pectoralis earlier to tune their downstroke.


Assuntos
Columbidae , Voo Animal , Animais , Fenômenos Biomecânicos , Voo Animal/fisiologia , Asas de Animais/fisiologia , Músculos , Modelos Biológicos
12.
Comput Biol Med ; 170: 108092, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325218

RESUMO

The excellent biological characteristics of insects provide an important source of inspiration for designing micro air vehicles (MAVs). Insect flight is an incredibly complex and energy-intensive process. Unique insect flight muscles and contraction mechanisms enable flapping at high frequencies. Moreover, the metabolic rate during flight can reach hundreds of times the resting state. Understanding energy consumption during flight is crucial for designing efficient biomimetic aircraft. This paper summarizes the structures and contraction mechanisms of insect flight muscles, explores the underlying metabolic processes, and identifies methods for energy substrate identification and detection, and discusses inspiration for biomimetic MAV design. This paper reviews energy consumption during insect flight, promotes the understanding of insect bioenergetics, and applies this information to the design of MAVs.


Assuntos
Materiais Biomiméticos , Voo Animal , Animais , Voo Animal/fisiologia , Asas de Animais/fisiologia , Desenho de Equipamento , Modelos Biológicos , Insetos/fisiologia , Fenômenos Biomecânicos
13.
Elife ; 122023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38117039

RESUMO

How morphogenetic movements are robustly coordinated in space and time is a fundamental open question in biology. We study this question using the wing of Drosophila melanogaster, an epithelial tissue that undergoes large-scale tissue flows during pupal stages. Previously, we showed that pupal wing morphogenesis involves both cellular behaviors that allow relaxation of mechanical tissue stress, as well as cellular behaviors that appear to be actively patterned (Etournay et al., 2015). Here, we show that these active cellular behaviors are not guided by the core planar cell polarity (PCP) pathway, a conserved signaling system that guides tissue development in many other contexts. We find no significant phenotype on the cellular dynamics underlying pupal morphogenesis in mutants of core PCP. Furthermore, using laser ablation experiments, coupled with a rheological model to describe the dynamics of the response to laser ablation, we conclude that while core PCP mutations affect the fast timescale response to laser ablation they do not significantly affect overall tissue mechanics. In conclusion, our work shows that cellular dynamics and tissue shape changes during Drosophila pupal wing morphogenesis do not require core PCP as an orientational guiding cue.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Pupa/genética , Asas de Animais/fisiologia , Morfogênese/genética , Polaridade Celular , Mutação
14.
J Exp Biol ; 226(24)2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37947199

RESUMO

Many birds experience fluctuations in body mass throughout the annual life cycle. The flight efficiency hypothesis posits that adaptive mass loss can enhance avian flight ability. However, whether birds can increase additional wing loading following mass loss and how birds adjust flight kinematics and postures remain largely unexplored. We investigated physiological changes in body condition in breeding female Eurasian tree sparrows (Passer montanus) through a dietary restriction experiment and determined the changes in flight kinematics and postures. Body mass decreased significantly, but the external maximum load and mass-corrected total load increased significantly after 3 days of dietary restriction. After 6 days of dietary restriction (DR6), hematocrit, pectoralis and hepatic fat content, take-off speed, theoretical maximum range speed and maximum power speed declined significantly. Notably, the load capacity and power margin remained unchanged relative to the control group. The wing stroke amplitude and relative downstroke duration were not affected by the interaction between diet restriction and extra load. Wing stroke amplitude significantly increased after DR6 treatment, while the relative downstroke duration significantly decreased. The stroke plane angle significantly increased after DR6 treatment only in the load-free condition. In addition, the sparrows adjusted their body angle and stroke plane angle in response to the extra load, but stroke amplitude and wingbeat frequency remained unchanged. Therefore, birds can maintain and even enhance their flight performance by adjusting flight kinematics and postures after a short-term mass loss.


Assuntos
Voo Animal , Pardais , Animais , Voo Animal/fisiologia , Fenômenos Biomecânicos , Músculos Peitorais/fisiologia , Asas de Animais/fisiologia , Postura
15.
J R Soc Interface ; 20(208): 20230421, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37963559

RESUMO

Tiny flying insects, such as Drosophila melanogaster, fly by flapping their wings at frequencies faster than their brains are able to process. To do so, they rely on self-oscillation: dynamic instability, leading to emergent oscillation, arising from muscle stretch-activation. Many questions concerning this vital natural instability remain open. Does flight motor self-oscillation necessarily lead to resonance-a state optimal in efficiency and/or performance? If so, what state? And is self-oscillation even guaranteed in a motor driven by stretch-activated muscle, or are there limiting conditions? In this work, we use data-driven models of wingbeat and muscle behaviour to answer these questions. Developing and leveraging novel analysis techniques, including symbolic computation, we establish a fundamental condition for motor self-oscillation common to a wide range of motor models. Remarkably, D. melanogaster flight apparently defies this condition: a paradox of motor operation. We explore potential resolutions to this paradox, and, within its confines, establish that the D. melanogaster flight motor is probably not resonant with respect to exoskeletal elasticity: instead, the muscular elasticity plays a dominant role. Contrary to common supposition, the stiffness of stretch-activated muscle is an obstacle to, rather than an enabler of, the operation of the D. melanogaster flight motor.


Assuntos
Drosophila melanogaster , Voo Animal , Animais , Drosophila melanogaster/fisiologia , Voo Animal/fisiologia , Músculos , Asas de Animais/fisiologia , Fenômenos Biomecânicos
16.
J Exp Biol ; 226(21)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37937662

RESUMO

Butterfly scales are among the richest natural sources of optical nanostructures, which produce structural color and iridescence. Several recurring nanostructure types have been described, such as ridge multilayers, gyroids and lower lamina thin films. While the optical mechanisms of these nanostructure classes are known, their phylogenetic distributions and functional ranges have not been described in detail. In this Review, we examine a century of research on the biological production of structural colors, including their evolution, development and genetic regulation. We have also created a database of more than 300 optical nanostructures in butterflies and conducted a meta-analysis of the color range, abundance and phylogenetic distribution of each nanostructure class. Butterfly structural colors are ubiquitous in short wavelengths but extremely rare in long wavelengths, especially red. In particular, blue wavelengths (around 450 nm) occur in more clades and are produced by more kinds of nanostructures than other hues. Nanostructure categories differ in prevalence, phylogenetic distribution, color range and brightness. For example, lamina thin films are the least bright; perforated lumen multilayers occur most often but are almost entirely restricted to the family Lycaenidae; and 3D photonic crystals, including gyroids, have the narrowest wavelength range (from about 450 to 550 nm). We discuss the implications of these patterns in terms of nanostructure evolution, physical constraint and relationships to pigmentary color. Finally, we highlight opportunities for future research, such as analyses of subadult and Hesperid structural colors and the identification of genes that directly build the nanostructures, with relevance for biomimetic engineering.


Assuntos
Borboletas , Nanoestruturas , Animais , Filogenia , Asas de Animais/fisiologia , Nanoestruturas/química , Visão Ocular , Cor
17.
Nature ; 622(7984): 767-774, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37794191

RESUMO

Since taking flight, insects have undergone repeated evolutionary transitions between two seemingly distinct flight modes1-3. Some insects neurally activate their muscles synchronously with each wingstroke. However, many insects have achieved wingbeat frequencies beyond the speed limit of typical neuromuscular systems by evolving flight muscles that are asynchronous with neural activation and activate in response to mechanical stretch2-8. These modes reflect the two fundamental ways of generating rhythmic movement: time-periodic forcing versus emergent oscillations from self-excitation8-10. How repeated evolutionary transitions have occurred and what governs the switching between these distinct modes remain unknown. Here we find that, despite widespread asynchronous actuation in insects across the phylogeny3,6, asynchrony probably evolved only once at the order level, with many reversions to the ancestral, synchronous mode. A synchronous moth species, evolved from an asynchronous ancestor, still preserves the stretch-activated muscle physiology. Numerical and robophysical analyses of a unified biophysical framework reveal that rather than a dichotomy, these two modes are two regimes of the same dynamics. Insects can transition between flight modes across a bridge in physiological parameter space. Finally, we integrate these two actuation modes into an insect-scale robot11-13 that enables transitions between modes and unlocks a new self-excited wingstroke strategy for engineered flight. Together, this framework accounts for repeated transitions in insect flight evolution and shows how flight modes can flip with changes in physiological parameters.


Assuntos
Evolução Biológica , Fenômenos Biofísicos , Voo Animal , Insetos , Músculos , Animais , Fenômenos Biofísicos/fisiologia , Voo Animal/fisiologia , Insetos/classificação , Insetos/fisiologia , Músculos/inervação , Músculos/fisiologia , Filogenia , Asas de Animais/inervação , Asas de Animais/fisiologia
18.
Bioinspir Biomim ; 18(5)2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37567187

RESUMO

Previous studies suggested that wing pitching, i.e. the wing rotation around its long axis, of insects and hummingbirds is primarily driven by an inertial effect associated with stroke deceleration and acceleration of the wings and is thus passive. Here we considered the rapid escape maneuver of hummingbirds who were initially hovering but then startled by the frontal approach of a looming object. During the maneuver, the hummingbirds substantially changed their wingbeat frequency, wing trajectory, and other kinematic parameters. Using wing kinematics reconstructed from high-speed videos and computational fluid dynamics modeling, we found that although the same inertial effect drove the wing flipping at stroke reversal as in hovering, significant power input was required to pitch up the wings during downstroke to enhance aerodynamic force production; furthermore, the net power input could be positive for wing pitching in a complete wingbeat cycle. Therefore, our study suggests that an active mechanism was present during the maneuver to drive wing pitching. In addition to the powered pitching, wing deviation during upstroke required twice as much power as hovering to move the wings caudally when the birds redirected the aerodynamic force vector for escaping. These findings were consistent with our hypothesis that enhanced muscle recruitment is essential for hummingbirds' escape maneuvers.


Assuntos
Voo Animal , Modelos Biológicos , Animais , Voo Animal/fisiologia , Insetos/fisiologia , Fenômenos Biomecânicos , Asas de Animais/fisiologia , Aves/fisiologia
19.
Sci Adv ; 9(30): eadg3877, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37494447

RESUMO

Wnt signaling members are involved in the differentiation of cells associated with eyespot and band color patterns on the wings of butterflies, but the identity and spatio-temporal regulation of specific Wnt pathway members remains unclear. Here, we explore the localization and function of Armadillo/ß-catenin dependent (canonical) and Armadillo/ß-catenin independent (noncanonical) Wnt signaling in eyespot and band development in Bicyclus anynana by localizing Armadillo (Arm), the expression of all eight Wnt ligand and four frizzled receptor transcripts present in the genome of this species and testing the function of some of the ligands and receptors using CRISPR-Cas9. We show that distinct Wnt signaling pathways are essential for eyespot and band patterning in butterflies and are likely interacting to control their active domains.


Assuntos
Borboletas , Via de Sinalização Wnt , Animais , beta Catenina/genética , beta Catenina/metabolismo , Borboletas/genética , Borboletas/metabolismo , Tatus/metabolismo , Pigmentação/genética , Asas de Animais/fisiologia
20.
Bioinspir Biomim ; 18(4)2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37366564

RESUMO

Birds are agile flyers that can maintain flight at high angles of attack (AoA). Such maneuverability is partially enabled by the articulation of wing feathers. Coverts are one of the feather systems that has been observed to deploy simultaneously on both the upper and lower wing sides during flight. This study uses a feather-inspired flap system to investigate the effect of upper and lower side coverts on the aerodynamic forces and moments, as well as examine the interactions between both types of flaps. Results from wind tunnel experiments show that the covert-inspired flaps can modulate lift, drag, and pitching moment. Moreover, simultaneously deflecting covert-inspired flaps on the upper and lower sides of the airfoil exhibit larger force and moment modulation ranges compared to a single-sided flap alone. Data-driven models indicate significant interactions between the upper and lower side flaps, especially during the pre-stall regime for the lift and drag response. The findings from this study are also biologically relevant to the observations of covert feathers deployment during bird flight. Thus, the methods and results summarized here can be used to formulate new hypotheses about the coverts role in bird flight and develop a framework to design covert-inspired flow and flight control devices for engineered vehicles.


Assuntos
Plumas , Voo Animal , Animais , Plumas/fisiologia , Voo Animal/fisiologia , Aves/fisiologia , Asas de Animais/fisiologia , Fenômenos Biomecânicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...